NOAA Technical Memorandum NMFS

FEBRUARY 1994

HOOK-AND-LINE FISHING STUDY AT CORDELL BANK, CALIFORNIA, 1986-1991

Maxwell B. Eldridge

NOAA-TM-NMFS-SWFSC-197

USS. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration National Marine Fisheries Service
Southwest Fisheries Science Center

NOAA Technical Memorandum NMFS

The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature.

HOOK-AND-LINE FISHING STUDY AT CORDELL BANK, CALIFORNIA, 1986-1991

Maxwell B. Eldridge
National Marine Fisheries Service, NOAA Southwest Fisheries Science Center
Tiburon Laboratory
3150 Paradise Drive
Tiburon, California 92038

NOAA-TM-NMFS-SWFSC-197

U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary
National Oceanic and Atmospheric Administration
D. James Baker, Under Secretary for Oceans and Atmosphere
National Marine Fisheries Service
Rolland A. Schmitten, Assistant Administrator for Fisheries

-

\square

$$
-
$$

ABSTRACT

Hook-and-line landings at the marine bank, Cordell Bank, California, were identified and quantified from 1986-1991. A total of 45 charter cruises were conducted in which an average 11.5 anglers expended 3.9 hours fishing. The mean vessel catch per trip was 162 fish landed, resulting in a total catch of 7,439 fish during the entire study. No annual pattern to the catch-per-unit effort was apparent, while interannual differences were found. Twenty-eight different fish species were identified during the study; a mean of 15.3 species per trip was observed. Rockfishes (genus Sebastes) dominated the catches, comprising over 80% of all landings. Yellowtail rockfish (S. flavidus), the target species of the research effort, made up 47.9% of the total catch. Sex ratios of the yellowtail rockfish exhibited an annual pattern, but the overall annual ratio was even. In comparison with coastwide landings, Cordell Bank was found to be a consistently productive fish habitat that supported a diverse fish community.

CONTENTS

Page
Title i
Abstract iii
Contents v
Introduction 1
Materials and Methods 3
Results 4
Effort 4
Catch 4
Species Composition. 4
Yellowtail Rockfish 5
Discussion 5
Acknowledgements 7
References 9
Appendix A 19

INTRODUCTION

Preliminary studies of rockfishes (Sebastes spp.) at Cordell Bank, California, began as early as 1984. The purpose of this research was to examine the inherent and environmental factors that influence the physiology, behavior, and adaptive capacity of a variety of ecologically diverse rockfishes. After a review of the available species, the yellowtail rockfish (Sebastes flavidus) was selected for concentrated study as a model species because of coastwide commercial importance, wide distribution, and suitability for laboratory experimentation. The laboratory and field research consisted of assessment of physiological and nutritional condition and its relationship to reproduction. Procedures and analyses required freshly caught, and sometimes live, specimens. Thus, hook-and-line fishing was employed as a means of capture, and was conducted from a chartered commercial vessel. Although sampling efforts were directed at yellowtail rockfish, a variety of fish species was landed. When monthly charter cruises began in 1986, a study was begun to monitor the catch and effort of these trips in order to better understand the fish community of Cordell Bank. This report documents the results of that study and provides information on fish species associations and their temporal and spatial distributions.

Cordell Bank is an elevated portion of the Salinian Block of the Pacific Plate. It is the northernmost seamount of a series of mounts that extend along the California Continental Shelf. It is located 37 km due west of Pt. Reyes, California, and approximately 100 km northwest of San Francisco, California (Fig. 1). The highly variegated rocky topography extends 15 km long by 8 km wide within the $91-\mathrm{m}$ contour line (50 fathom). The Bank top covers approximately $47 \mathrm{~km}^{2}$. While most of the Bank lies within the $60-\mathrm{m}$ depth, some pinnacles reach to within 40 m of the surface. Eastward of the Bank lies the continental shelf that averages 110 m in depth. Immediately to the west is the continental slope leading to abyssal depths.

The biotic community is abundant and diverse (NOAA, 1989; Schmieder, 1991). Open waters and deep depths preclude large kelp colonization, but hard substrates are covered with encrusting algae and hydrocorals. Dense benthic invertebrate communities have been observed. No previous fish surveys have been done on Cordell Bank. Commercial trawl fishing has traditionally occurred in adjacent grounds. Both commercial and recreational fishing on the Bank have been restricted to hook-and-line gear. The relative far distance from the coast and rough sea conditions that prevail for much of the year have resulted in low exploitation.

Figure 1. Map of sampling site for hook-and-line study at Cordell Bank, individual sampling sites.

A species list of fishes was compiled as part of the final environmental impact statement and management plan for the Cordell Bank National Marine Sanctuary (NOAA, 1989). The compilation represents data from visual observations by divers of the Cordell Expeditions (Schmieder, 1991) and from preliminary catch records in this study and from commercial and recreational catches monitored by the California Department of Fish and Game. A total of 38 species was reported with no account of their relative abundance or seasonal distribution. Within this grouping, 17, or 45%, were Sebastes species. Yellowtail rockfish is known to form large aggregations above rock pinnacles. This commercially important species can be characterized as a semipelagic rockfish whose range extends from San Diego, California, to the Aleutian Islands, Alaska. The center of its abundance is off the central Oregon and Washington coasts.

While yellowtail rockfish were plentiful in the catches of our early studies of Cordell Bank, other fishes were also collected. The purpose of this study was to determine what fish species co-occur with the yellowtail rockfish, and to measure their relative seasonal abundances by their availability to hook-and-line fishing.

MATERIALS AND METHODS

From June, 1986, to April, 1991, chartered cruises were made at approximate monthly intervals to Cordell Bank from Bodega Bay, California. The chartered vessel was a $19-\mathrm{m}$ party boat run by the owner-captain who had familiarity with the Bank. Departures from Bodega Bay were at 0700 hours and transit times to the Bank averaged 1.75 h with times varying according to sea conditions and the area of the Bank to be fished.

Fishers consisted of NMFS staff and experienced fishermen from the local fishing fleet. Fishing was by hook-and-line using either single-weighted simulated shrimp lures or six-hook shrimp fly jigs with one- or two-pound sinkers. Fishing locations were selected on the basis of the suitable images visible on the vessel's sonar color scanner. Start and finish fishing times were recorded at each location where fish were landed and their corresponding navigational positions and bottom depths noted. These timed efforts were then summed to arrive at a total time fished for each day. The number of persons actively fishing was recorded for each day. All fish that were hooked and landed were identified and enumerated regardless of their dispensation.

RESULTS

Effort

From June, 1986, to April, 1991, a total of 45 trips to Cordell Bank was completed. All but a few (i.e., 40 of 45) fishing days were spent in the northern half of the Bank (Fig. 1) with an average fishing depth of $85.4 \mathrm{~m}(S D=9.9 \mathrm{~m})$ and a range of 62-135m.

The expenditure of effort among the years was not even (Tables 1 and 2). Years 1987 and 1990 had 12 consecutive months of sampling with no interruptions. Years 1989 and 1991 had reduced effort with four and three collections respectively. When the total numbers of trips made for individual months are pooled over the five years, the distribution of effort is even among the 12 calender months. The overall mean number of trips per month calculated to 3.8 trips per month with a range of 3.0-4.5.

An average of 11.5 fishers per trip (range 5-20) actively participated in the fishing. Fishing always began mid-morning with a mean start time of 0949 hours. The average time spent collecting fish was 3.9 h ($\mathrm{SD}=1.2$, range $1.7-6.0 \mathrm{~h}$).

Catch
The total number of fish caught during the five-year study amounted to 7,439. These trip catches averaged 162 fish per trip, with a range of 111-241. No general temporal pattern in catches was found among the 12 months (Table 1). Highest catches occurred in December; lowest catches were in November. The more accurate measure of catchability and relative fish abundance, CPUE (number of fish caught per angler per hour), likewise displayed no annual pattern. The highest mean CPUE occurred in February and the lowest in October. Interannual differences were marked, both in total catches and per unit effort catches. Total catches naturally reflected the total number of monthly trips made during the respective year. The directly comparable mean catch per trip and CPUE values showed that 1990 was the most productive year, while 1987 was the least.

Species Composition

During the five-year study, 28 different fish species were identified (Table 3). The mean number of species by month varied from 13 to 19 (Table 1); nonetheless, the number of species throughout the year varied relatively little ($C V=11.8 \%$) around a mean of 15.3 species per trip. Similarly, both the total number of species for each year and the annual mean number of species per trip were consistent (mean \pm SD $=17.1 \pm 1.5$ total species for the year; 10.0 ± 0.6 number of species per trip).

The most abundant species collected was our target species, yellowtail rockfish, which made up 47.4% of the total catch (Table 5). Succeeding four species combined with the yellowtail rockfish comprised over 80% of all fish landed (S. rosaceus, S. paucispinis, S. serranoides, S. chlorostictus). of the 13 most abundant species, all but one (ophiodon elongatus) were Sebastes species. Of the 28 species collected, 21 were Sebastes species. Together they comprised 95.6% of all fish landed. There was no particular seasonal pattern to landings of the above five abundant species. All were captured throughout the year suggesting year-round residency. S. ruberrimus and s. ovalis were also caught during all months, though in lower numbers. Other species, namely s. entomelas, \underline{S}. goodei, and S $_{\text {. mystinus, }}$ occurred in high numbers during restricted periods (i.e., July, March, and September, May, respectively).

Yellowtail Rockfish

Yellowtail rockfish were sexed as well as counted with a total count of 3,057 , composed of 1,622 males and 1,885 females (Table 4). The resultant mean ratio of all trips was essentially even (i.e., 1.01); the overall ratio for the summed totals was 0.86 males/females. An intra-annual cycle was observed with males dominating the catches during the winter and females more abundant the remainder of the year (Table 4). There were significant (ANOVA; $P<0.01$) interannual differences in the ratios; there was no apparent temporal pattern but there were considerable differences in the number of trips per year. The overall annual ratios indicated that females were more abundant in five of the six years. The sixth year (1991) was sampled only the first three months. The mean ratios for each year showed a mixed result and no apparent trend.

DISCUSSION

The 45 hook-and-line collections that spanned six years and included two consecutive 12 -month sampling periods provided the most comprehensive database to date on the fish community of Cordell Bank, California. The study also demonstrated the wide diversity and productivity of this marine bank.

This study's findings combined with the observations of Schmeider (in U.S. Department of Commerce, 1989) document 49 different fish species (Table 6). Schmeider's non-quantitative findings were based on SCUBA observations and included 20 species that would not be expected to be commonly collected by hook-andline methods off party boats. Examples are Mola mola, Thunnus alalunga, and the small cottids. Likewise, this study produced five rockfish species that were not observed by Schmeider
(Sebastes hopkinsi, S. nebulosus, ${ }^{\text {S }}$. proriger, $\underline{\text { S }}$. rosenblatti, and S. saxicola).

It was readily apparent from this study and others that Sebastes species dominated the fish community at Cordell Bank. Rockfishes represented 95.6% of all fish landed (Table 5). Unpublished data from a California Department of Fish and Game study of partyboat catches from Cordell Bank over 32 consecutive months from 1987-1989 (pers. comm. Diana Watters, California Department of Fish and Game) showed Sebastes comprised 96.3% of the catch. Dominance of Sebastes is typical of waters off the entire Pacific coast, especially off central and northern California. Recreational fish catch reports, beginning in 1981, noted up to 44% of all catches were Sebastes species (U.S. Department of Commerce, 1985, 1987, 1989; Witzig et al., 1992). In a historical comparison of party boat catch in central and northern California, it was found that 18 of the 20 most frequently caught species were rockfishes (California Department of Fish and Game, 1993). A 1987 to 1991 study of commercial passenger fishing vessel (CPFV) catches in waters from Ft. Bragg to Morro Bay, California, documented that Sebastes species accounted for 88.5 to 97.9% by number of the observed landings (Reilly et al., 1993). Even in southern California, 30 of 49 recreationally caught species from the Channel Islands were rockfishes (Love et al., 1985).

The dominance of yellowtail rockfish in this study's catch (47.4\%) demonstrated that the species was an obvious target of effort. Nonetheless, yellowtail rockfish has been shown to be a prominent species in hook-and-line recreationally caught landings. CPFV data from northern Cordell Bank had s. goodei as the most numerous catch (39.7\%) followed by s. flavidus (17.8%), S. chlorostictus (8.6%), and S. paucispinis (7.7%) (pers. comm. Diana Watters). The more spatially and temporally comprehensive survey of Reilly et al. (1993) showed that coastwide the five most abundant fishes were, in order of relative abundance, \underline{S}. goodei, \underline{S}. mystinus, \underline{s}. flavidus, $\underline{\text { S }}$. entomelas, and \underline{s}. paucispinis. The prevalence of yellowtail rockfish, whose region of highest abundance is located from northern California northward (Alverson et al., 1964; Westrheim, 1970), declined in catches from waters to the south of Cordell Bank.

Catch rates from this study indicated that Cordell Bank was a productive habitat for finfish. The overall mean CPUE (numbers of fish per angler hour) for all 45 trips was 4.44 ± 3.16 SE. The California Department of Fish and Game survey was comparable with a value of 3.57 for northern Cordell Bank. On a catch basis of number of fish per angler-day, averaged for the entire study, the catch rate was 15.0 ± 2.6. For comparison, the coastwide long-term rate found in the Recreational Fishery Statistics Survey was 8.6, with a range of $5.4-11.2$ (Witzig et al., 1992). The more regionally confined central and northern California
survey of Reilly et al. (1993) produced a mean catch rate of 11.8. Thus, Cordell Bank appears to have an abundant and relatively stable fish population. A possible explanation for this is the low exploitation rate due, in part, to the fact that trawlers are unable to fish the rocky, uneven bottom, and the difficulty in traveling to the distant offshore bank, an area known for rough sea conditions.

The monthly pattern of sex ratios of yellowtail rockfish probably reflects changes in behavior during the annual reproductive cycle (Eldridge et al., 1991). The period when males were most frequently landed occurred during the period of gestation in the females. Laboratory observations of gestating females indicate that feeding is suppressed during the latter stages of gestation, prior to parturition.

In summary, the six calender year, 45-trip study of hook-and-line caught fishes from Cordell Bank, California, documented a fish community that was among the most diverse and abundant along the Pacific coast.

ACKNOWLEDGEMENTS

The owner/operator of the charter vessel F / V New Sea Angler, Rick Powers, demonstrated his seamanship, cooperative nature, and keen fishing abilities during this study. Over the course of this study, many volunteer anglers offered their services. Without their assistance and cheerful cooperation, often during inclimate and uncomfortable circumstances, this study would not have been possible.

REFERENCES

```
Alverson, D. L., A. T. Pruter, and L. L. Ronholt
    1964. A study of demersal fishes and fisheries of the
    northeastern Pacific Ocean. H. R. MacMillan Lectures in
    Fisheries, Institute of Fisheries, University of British
    Columbia, Vancouver, 190 p.
California Department of Fish and Game
    1993. Rockcod. Sport Fish Restoration 14(1):2-4.
Eldridge, M. B., J. A. Whipple, B. M. Jarvis, M. J. Bowers, and
J. Gold
    1991. Reproductive performance of Yellowtail rockfish,
    Sebastes flavidus, from Cordell Bank, California.
    Environ. Biol. Fishes 30(1-2):91-102.
Love, M. S., W. Westphal, and R. A. Collins
    1985. Distributional patterns of fishes captured aboard
    commercial passenger fishing vessels along the northern
    Channel Islands, California. Fish. Bull., U. S. 83(3):243-
    251.
Reilly, P. N., D. Wilson-Vandenberg, D. Watters, J. E. Hardwick,
and D. Short
    1993. On board sampling of the rockfish and lingcod
    commercial passenger fishing vessel industry in
    northern and central California, May }1987\mathrm{ to December 1991.
    California Department of Fish and Game Administrative Report
    93-4, 242 p.
Schmieder, R. W.
    1991. Ecology of an underwater island. Cordell Expeditions,
    Walnut Creek, California, 98 p.
U.S. Department of Commerce
    1985. Marine Recreational Fishery Statistics Survey, Pacific
    Coast, 1983-1984. Current Fishery Statistics Number 8325,
    Washington, D. C., 189 p.
```

1987. Marine Recreational Fishery Statistics Survey, Pacific
Coast, 1986. Current Fishery Statistics Number 8393,
Washington, D. C., 114 p .
U.S. Department of Commerce
1988. Final environmental impact statement and management plan for the proposed Cordell Bank National Marine Sanctuary. Prepared by Marine and Estuarine Management Division, Office of Ocean and Coastal Resource Management, National Ocean Service, NOAA, Washington, D. C., Volume 1, April 1989, 137 p.

Westrheim, S. J.
1970. Survey of rockfishes, especially Pacific ocean perch, in the northeast Pacific Ocean, 1963-66. J. Fish. Res. Board Can. 27:1781-1809.

Witzig, J. F., M. C. Holliday, R. J. Essig, and D. L. Sutherlund 1992. Marine Recreational Fishery Statistics Survey, Pacific Coast, 1987-1989. Current Fisheries Statistics Number 9205, Washington, D. C., 367 p.
Table 1. Summary of effort and catch data by month and year for cordell Bank hook-andline survey, 1986-91.
EFFORT

Month	EFFORT			CATCH				
	No. of Trips	\bar{x} No. of Fishermen	x No. of Hours Fished	Total Catch	\bar{x} No. of Per Trip	No. of Species	\bar{x} No. Spp. Per Trip	CPUE
January	4	10.5	4.5	843	211	14	10.5	4.893
February	4	8.5	3.8	649	162	13	8.5	6.803
March	4	11.5	3.8	685	171	14	11.5	4.173
April	4	14.3	4.2	715	179	19	10.8	3.415
May	2	11.0	3.9	330	165	13	9.0	4.010
June	3	9.7	3.4	499	166	16	10.7	6.070
July	4	12.3	3.1	739	185	17	12.3	5.323
August	4	11.3	4.1	670	168	15	11.1	3.785
September	4	11.8	3.0	633	158	16	9.3	4.805
October	3	13.3	4.0	514	171	14	8.6	3.100
November	3	9.3	4.3	363	121	15	9.3	3.857
December	6	11.3	4.2	799	133	17	11.3	3.327
Years								
1986	7	10.3	5.1	889	127	18	10.7	2.513
1987	12	11.5	4.8	1393	116	18	9.2	2.403
1988	7	13.3	3.8	945	135	17	9.4	2.741
1989	4	12.3	3.0	730	104	15	10.0	4.853
1990	12	11.0	2.7	2920	243	19	10.5	8.087
1991	3	9.0	3.5	562	187	16	10.3	5.923
All	45	11.5	3.9	7439	165	28	10.0	4.441

Table 2. Depths, number of fishermen, hours fished and the total catch of fish and
species of monthly charter boat hook-and-line surveys, 1986-91.

$$
\begin{aligned}
& \text { Fishing } \\
& \text { Depth (F) }
\end{aligned}
$$

Hours
Fished

Total
catch

Total No.
of Species
1都
Table 2

Table 3. Names, total c trip of fishes 1986-91.	tches, mean catches per collected by hook and lin	and Corde	imum numbe , Califor	caught per , from
Common Name	Scientific Name	Total Catch	Mean Catch Per Trip	Max. Catch Per Trip
Spiny dogfish	Squalus acanthias	1	. 02	1
Chinook salmon	Oncorhynchus tshawytscha	3	. 07	1
Lingcod	ophiodon elongatus	287	6.38	33
Greenspotted rockfish	Sebastes chlorostictus	381	8.47	83
Starry rockfish	S. constellatus	143	3.18	9
Greenstripped rockfish	S. elongatus	32	. 71	15
Widow rockfish	S. entomelas	375	8.33	182
Yellowtail rockfish	S. flavidus	3528	77.60	247
Chilipepper rockfish	S. goodei	47	1.04	27
Squarespot rockfish	S. hopkinsi	2	. 04	1
Cowcod rockfish	S. levis	1	. 02	1
Quilback rockfish	S. maliger	2	. 04	2
Vermillion rockfish	S. miniatus	14	. 31	3
Blue rockfish	S. mystinus	36	. 80	15
China rockfish	S. nebulosus	1	. 02	1
Speckled rockfish	S. ovalis	134	2.98	34
Bocaccio rockfish	S. paucispinis	717	15.93	58
Canary rockfish	S. pinniger	308	6.84	82
Redstripe rockfish	S. proriger	1	. 02	1
Rosy rockfish	S. rosaseus	725	16.11	68
Green blotched rockfish	S. rosenblatti	18	. 40	15
Yelloweye rockfish	S. rubberrimus	110	2.44	10
Stripetail rockfish	S. saxicola	2	. 04	2
Olive rockfish	S. serranoides	521	11.58	109
Jack mackerel	Trachuras symmetricus	25	. 56	12
Pacific mackerel	Scomber japonicus	14	. 31	14
Pacific sanddab	Citharichthys sordidus	1	. 02	1
Rock sole	Lepidopsetta bilineata	10	. 22	3

Table 4. Numbers of male and female and the male:female mean ratios and overall ratio of yellowtail rockfish for all individual months and years.

Month	No. of Males	No. of Females	Mean Ratio M:F	Overall M: F Ratio
January	175	256	0.76	0.68
February	206	171	1.57	1.20
March	233	146	2.06	1.60
April	148	131	1.32	1.13
May	46	55	1.05	0.84
June	142	124	1.83	1.15
July	148	171	0.91	0.87
August	116	151	0.85	0.77
September	163	207	0.61	0.78
October	98	150	0.53	0.65
November	51	80	0.66	0.64
December	96	245	0.42	0.39

Years

1986	101	120	1.11	0.84
1987	300	357	1.27	0.84
1988	183	224	0.78	0.82
1989	165	244	1.02	0.68
1990	715	802	0.88	0.89
1991	158	138	1.10	1.14
ALL	-1622	1885	1.01	0.86

Table 5. List of fish species in the order of relative abundance and percent of total catch.

Rank

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Scientific Name
Sebastes flavidus
Sebastes rosaceus
Sebastes paucispinis
Sebastes serranoides
Sebastes chlorostictus
Sebastes entomelas
Sebastes pinniger
ophiodon elongatus
Sebastes constellatus
Sebastes ovalis
Sebastes rubberrimus
Sebastes goodei
Sebastes mystinus
Sebastes elongatus
Trachurus symmetricus
Sebastes rosenblatti
Scomber japonicus
Sebastes miniatus
Lepidopsetta bilineata
Oncorhynchus tshawytscha
Sebastes maliger
Sebastes hopkinsi
Sebastes saxicola
Sebastes proriger
Sebastes levis
Citharichthys sordidus
Squalus acanthias
Sebastes nebulosus
\% Composition
47.4
9.7
9.6
7.0
5.1
5.0
4.1
3.9
1.9
1.8
1.5
0.6
0.5
0.4
0.3
0.2
0.2
0.1
0.1
0.1
0.04
0.03
0.03
0.03
0.01
0.01
0.01
0.01
0.01

Table 6. List of fish species observed at Cordell Bank, California.

Family
Squalidae
Lamnidae
Carcharinidae
Torpedinidae
Chimaeridae
Engraulidae
Salmonidae
Scomberesocidae
Scorpaenidae

Scientific Name		Common Name
Squalus	acanthias	spiny dogfish
Isurus	oxyrinchus	bonito shark
Prionace	glauca	blue shark
Torpedo	californica	Pacific
Hydrolagus	colliei	electric ray ratfish
Engraulis	mordax	northern anchovy
Oncorhynchus	tshawytscha	king salmon
Cololabis	saira	Pacific saury
Sebastes	constellatus	starry rockfish
S.	chlorostictus	greenspotted rockfish
S.	entomelas	widow rockfish
S.	elongatus	greenstriped rockfish
S.	flavidus	yellowtail rockfish
S.	goodei	chilipepper rockfish
S.	hopkinsi	squarespot rockfish
S.	levis	cowcod rockfish
S.	maliger	quillback rockfish
S.	melanops	black rockfish
S.	miniatus	$\begin{aligned} & \text { vermillion } \\ & \text { rockfish } \end{aligned}$
5.	mystinus	blue rockfish
S.	nebulosus	China rockfish
S.	ovalis	speckled rockfish
S.	paucispinis	bocaccio
S.	pinniger	canary rockfish
S.	proriger	red striped rockfish
S.	rosaceus	rosy rockfish
S.	rosenblatti	greenblotched rockfish
S.	ruberrimus	yelloweye rockfish
S.	saxicola	stripetail rockfish
S.	serranoides	olive rockfish

Table 6 (cont.). List of fish species observed at Cordell Bank, California.

Family	Scientific Name		Common Name
Anoplopomatidae	Anoplopoma	fimbria	sablefish
Hexagrammidae	Hexagrammos	decagrammus	kelp greenling
	Ophiodon	elongatus	lingcod
	Oxylebius	pictus	painted greenling
Cottidae	Artedius	corralinus	corraline sculpin
	A.	meanyi	Puget sound sculpin
	Hemilepidotus	spinosus	brown Irish lord
Agonidae	Xeneretmus	triacanthus	bluespotted poacher
Serranidae	Paralabrax	clathratus	kelp bass
Branchiostegidae	Caulolatilus	princeps	```ocean whitefish```
Carangidae	Trachurus	symmetricus	jack mackerel
Stichaeidae	Chirolophis	nugator	mosshead warbonnet
Scombridae	Scomber	japonicus	Pacific mackerel
	Thunnus	alalunga	albacore tuna
Bothidae	Citharichthys	sordidus	Pacific sanddab
Pleuronectidae	Eopsetta	jordani	petrale sole
	Lepidosetta	bilineata	rock sole
	Psettichthys	melanostictus	sand sole
Molidae	Mola	mola	common mola

 OONHNO $\begin{array}{ll}\text { Squalus acanthias } \\ \text { Oncorhynchus tshawytscha } \\ \text { Sebastes constellatus } \\ \text { S. } & \text { chlorostictus } \\ \text { S. } & \text { elongatus } \\ \text { S. } & \text { entomelas } \\ \text { S. } & \text { flavidus } \\ \text { S. } & \text { goodei } \\ \text { S. } & \text { hopkinsi } \\ \text { S. } & \text { levis } \\ \text { S. } & \text { maliger } \\ \text { S. } & \text { miniatus } \\ \text { S. } & \text { mystinus } \\ \text { S. } & \text { nebulosus } \\ \text { S. } & \text { ovalis } \\ \text { S. } & \text { paucispinis } \\ \text { S. } & \text { proriger } \\ \text { S. } & \text { rosaceus } \\ \text { S. } & \text { rosenblatti } \\ \text { S. } & \text { ruberrimus } \\ \text { S. } & \text { saxicola } \\ \text { S. } & \text { serranoides } \\ \text { Ophiodon elongatus } \\ \text { Trachurus symmetricus } \\ \text { Scomber japonicus } \\ \text { Citharichthys sordidus } \\ \text { Lepidopsetta bilineata }\end{array}$
individual

HOONON NONOOOONOOOMNN NOOMOONOOOO

OOHTOONHMNOOOOOOONONOHOOOOOOO
$\underset{\sim}{n} 0000 \mathrm{H} 0000000000 \mathrm{HOOHOHOON}$
Scientific Name
Squalus acanthias
Sebastes constellatus
s. chlorostictus
elongatus
entomelas
flavidus
goodei
hopkis
$\begin{array}{ll}\text { S. } & \text { levis } \\ \text { S. } & \text { maliger } \\ \text { S. } & \text { miniatus } \\ \text { S. } & \text { mystinus } \\ \text { S. } & \text { nebulosus } \\ \text { S. } & \text { ovalis } \\ \text { S. } & \text { paucispini } \\ \text { S. } & \text { pinniger } \\ \text { S. } & \text { proriger } \\ \text { S. } & \text { rosaceus } \\ \text { S. } & \text { rosenblatt } \\ \text { S. } & \text { ruberrimus } \\ \text { S. } & \text { saxicola } \\ \text { S. } & \text { serranoide }\end{array}$
sn7eよu兀ə
sn7e6uota
Trachurus symmetricus
Scomber japonicus
Citharichthys sordidus
Lepidopsetta bilineata

Appendix A (cont.). Landings of fish species at Cordell Bank, California, by individual cruises by date (month/year).			Month/Year
	$11 / 87 \quad 12 / 87$	$1 / 88 \quad 2 / 88$	

 $\begin{array}{ll}\text { Squalus acanthias } \\ \text { Oncorhynchus tshawytscha } \\ \text { Sebastes constellatus } \\ \text { S. } & \text { chlorostictus } \\ \text { S. } & \text { elongatus } \\ \text { S. } & \text { entomelas } \\ \text { S. } & \text { flavidus } \\ \text { S. } & \text { goodei } \\ \text { S. } & \text { hopkinsi } \\ \text { S. } & \text { levis } \\ \text { S. } & \text { maliger } \\ \text { S. } & \text { miniatus } \\ \text { S. } & \text { mystinus } \\ \text { S. } & \text { nebulosus } \\ \text { S. } & \text { ovalis } \\ \text { S. } & \text { pinniger } \\ \text { S. } & \text { proriger } \\ \text { S. } & \text { rosaceus } \\ \text { S. } & \text { rubenblatti } \\ \text { S. } & \text { saxicola } \\ \text { S. } & \text { Serranoides } \\ \text { Ophiodon elongatus } \\ \text { Trachurus symmetricus } \\ \text { Scomber japonicus } \\ \text { Citharichthys sordidus } \\ \text { Lepidopsetta bilineata }\end{array}$
ұеnp̣̣ィ!puT

$$
00 \mathrm{HHOHO} 00000 \mathrm{H}
$$

$$
\begin{aligned}
& \text { Squalus acanthias } \\
& \text { Oncorhynchus tshawytscha }
\end{aligned}
$$

Sebastes constellatus

$$
\begin{aligned}
& \text { chlorostle } \\
& \text { elongatus }
\end{aligned}
$$

$$
\begin{aligned}
& \text { elongatus } \\
& \text { entomelas }
\end{aligned}
$$

flavidus

$$
\begin{aligned}
& \text { goodei } \\
& \text { hopkinsi }
\end{aligned}
$$

$$
\begin{aligned}
& \text { levis } \\
& \text { maliqe }
\end{aligned}
$$

$$
\begin{aligned}
& \text { maliger } \\
& \text { miniatus }
\end{aligned}
$$

$$
\begin{aligned}
& \text { miniatus } \\
& \text { mystinus }
\end{aligned}
$$

$$
\begin{aligned}
& \text { mystinus } \\
& \text { nebulosus }
\end{aligned}
$$

ovalis
paucispinis
paucispır

$$
\begin{aligned}
& \text { plnnlger } \\
& \text { proriger }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rosenblatti } \\
& \text { ruberrimus }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rosaceus } \\
& \text { rosenblatti }
\end{aligned}
$$

cruises by date (month/year)

$$
\begin{array}{r}
\text { Month/Year } \\
8 / 89 \quad 9 / 89 \\
\hline
\end{array}
$$

by

$$
\begin{aligned}
& \text { snqe6uotə } \\
& \text { әрtouexues }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ophiodon elongatus } \\
& \text { Trachurus symmetricus }
\end{aligned}
$$ Scomber japonicus Citharichthys sordidus Lepidopsetta bilineata

Appendix A (cont.). Landings of fish species at Cordell Bank, California, by individual cruises by date (month/year).

$1 / 90$	12/90	1/91	2/91	4/91
0	0	0	0	0
0	0	0	0	0
2	0	7	4	4
5	1	2	0	0
0	0	0	0	0
4	2	1	16	9
49	41	79	142	75
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	0	0	0	0
0	0	0	0	1
0	0	0	0	1
2	0	0	7	9
5	6	36	27	13
1	4	4	6	0
0	0	0	0	0
11	4	5	14	29
0	0	0	0	0
0	0	0	2	1
0	0	0	0	1
26	10	3	5	37
5	3	7	6	8
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost $\$ 9.00$. Recent issues of NOAA Technical Memorandums from the NMFS Southwest Fisheries Science Center are listed below:

NOAA-TM-NMFS-SWFSC-187 Hawaiian monk seal observations at French Frigate Shoals, 1985
J.J. ELIASON, J.R. HENDERSON, and M.A. WEBBER
(September 1993)
188 "Best" abundance estimates and best management: Why they are not the same.
B.L. TAYLOR
(October 1993)
189 Fishery interaction between the tuna longline and other pelagic fisheries of Hawaii.
R.A. SKILLMAN, C.H. BOGGS, and S.G. POOLEY (October 1993)

190 Statistical guidelines for a pilot observer program to estimate turtle takes in the Hawaii longline fishery.
G.T. DiNARDO
(November 1993)
191 The Hawaiian monk seal on Laysan Island.
D.J. ALCORN and R.L. WESTLAKE
(December 1993)
192 Techniques for the preparation and examination of reproductive samples collected from dolphins in the eastern tropical Pacific. P.A. AKIN, K.M. PELTIER, and R.B. MILLER (December 1993)

193 A comparison of the recreational and commercial fisheries for lingcod (Ophiodon elongatus) off the Pacific coast of the United States, and a description of the recreational lingcod fishery.
K.R. SILBERBERG and P.B. ADAMS
(December 1993)
194 Economic effects of the United Nations moratorium on high seas driftnet fishing.
D.D. HUPPERT and T.W. MITTLEMAN
(December 1994)
195 Report on cetacean aerial survey data collected between the years of 1974 and 1982.
T. LEE
(January 1994)
196 A test of two photogrammetric measuring instruments used to determine dolphin lengths from vertical aerial photographs J.W. GILPATRICK, JR. and M.S. LYNN (January 1994)

